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Abstract We investigate the survival of symmetries in a relativistic system of two mutu-
ally interacting bosons coupled with an external field, when this field is “strongly” transla-
tion invariant in some directions and additionally remains unchanged by other isometries of
spacetime. Since the relativistic interactions cannot be composed additively, it is not a pri-
ori garanteed that the two-body system inherits all the symmetries of the external potential.
However, using an ansatz which permits to preserve the compatibility of the mass-shell con-
straints in the presence of the field, we show how the “surviving isometries” can actually be
implemented in the two-body wave equations.

Keywords Relativistic quantum mechanics · Relativistic wave equations · Mass-shell
constraints

1 Introduction, Notation

Applying an external field to a particle generally spoils Poincaré invariance. But in many
cases of interest some piece of this invariance still survives, because the external field itself
exhibits certain kind of symmetry; for instance a static Coulomb field applied to a charged
particle preserves spherical symmetry though it breaks space translation invariance.

At least insofar as scalar particles are concerned, the symmetries of the field could
be characterized as the symmetries of the one-body motion in this field because (through
Noether’s theorem) they are automatically reflected in the motion of a test particle.

When external forces are applied to a system of several particles undergoing mutual
interactions, it is tempting to expect a similar situation; in other words it would be natural to
formulate a general principle of invariance under the surviving isometries, as follows:

Principle of Isometric Invariance If the external potentials applied to the system remain
invariant under a transformation of the Poincaré group, then the system should enjoy the
same symmetry.
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The Galilean analog of this statement is trivial, because usually all the interactions arise
additively in the non-relativistic Hamiltonian.

Insofar as the equation of motion is concerned, the relativistic dynamics of a single par-
ticle automatically agrees with the principle [1]1. In contrast, as soon as N > 1, it is by no
means obvious that N -body relativistic dynamics can always be constructed in agreement
with the principle of isometric invariance.

Indeed relativistic interactions cannot be just linearly composed; such a complication
is bound to arise in any formulation of relativistic dynamics (see for instance the work of
Sokolov [2] using the “point form” of dynamics).

The main goal of this article consists in proving that, given a system of two mutually
interacting particles, the coupling of this system to a large class of external fields can be
actually realized in a way that satisfies this principle.

For analyzing these matters there exist many formulations of relativistic particle dy-
namics, but the more appropriate ones are those which make use of manifestly covariant
mass-shell constraints [3, 4] [5, and references therein], [6]. In this framework the motion is
generated by the (half) squared-mass operators and is governed by a system of N coupled
wave equations [7–13]. In the two-body case, the relationship between this approach and
the conventional methods of quantum field theory has been established [14, 15], [16]2. An
advantage of the constraint formalism over the Bethe-Salpeter equation is the natural elim-
ination of the relative-time degree of freedom. Let us rather emphasize that in the context
of mass-shell constraints (which admits a classical analog with Poisson brackets in a phase
space) symmetries and first integrals have a clear-cut status: for example a constant of the
motion is characterized by its commutation with both squared-mass operators.

For simplicity we focus on the case of two scalar particles which interact between them-
selves and are also submitted to external forces. Assuming that we explicitly know the term
describing mutual interaction alone, the first problem is to write down wave equations that
remain compatible when the external field is applied to the system; another requirement is
obviously in order: one must retrieve the correct limits when either the mutual interaction or
the external field vanishes.

In general this problem is not tractable in closed form, and the necessary requirements
stated above are not sufficient for a full determination of the wave equations. Complemen-
tary information must be obtained either from the underlying quantum field theory or from
reasonable assumptions of “simplicity” which would actually involve some implicit sym-
metry. The principle of isometric invariance provides a natural prescription for removing or
at least reducing the ambiguities.

We shall concentrate on the cases where the external field is translation invariant (in a
special way referred to as strong) along some directions of spacetime, because this situation
allows for mass-shell constraints in closed form.

A first solution was given by J. Bijtebier [17] under the hypothesis that the applied field
is strongly stationary along a (implicitly unique) timelike direction. We put forward a more
systematic formulation which only requires that the external potential is strongly translation

1In the same spirit we have elsewhere invoked isometric invariance in the definition of positive frequencies, in
the context of curved spacetime. Indeed the motion of a test particle in General Relativity is physically a one-
body problem in external gravitational field, but in this case the group of spacetime isometries is “smaller”
than Poincaré.
2For applications in a constant magnetic field that work should be generalized in a way that would treat all
the possible lab frames on the same footing.
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invariant along one or several directions of spacetime [18].3 Such directions are labelled
as “longitudinal” and, in the generic case, their orthogonal complement is spanned by the
“transverse” ones; in this study we exclude the exceptional case where the longitudinal di-
rections span a null manifold. This approach provides an Ansatz which permits to explicitly
write down the squared-mass operators in a new representation; these operators in turn are
strongly translation invariant, implying that strong-translation invariance is automatically
preserved by the coupling.

Naturally, beside strong translation invariance, it may happen that the external potential
remains unchanged also under some other isometries.

For instance (in suitable coordinates) a constant magnetic field not only is strongly trans-
lation invariant along the directions that span the plane (03) but also exhibits rotational
symmetries in the planes (12) and (03).

The above principle would require that also these extra symmetries are preserved in the
motion of two charged particles, even when we take their mutual interaction into account. In
this situation the question arises as to know whether the squared-mass operators furnished
by the ansatz actually respect these additional symmetries.

Although we mainly have in mind the case of a constant magnetic field, we present here
a general treatment valid for any external field which enjoys strong translation invariance.
Note that up to now the merit of the ansatz was to provide squared-mass operators that
reduce to the correct limits when any of the interactions vanishes. But the ansatz will appear
more satisfactory if we further prove that it respects isometric invariance.

In order to tackle this question we are thus led to consider the (continuous) isometries of
spacetime that survive as symmetries of the system in the presence of an external field.

Section 2 deals with one-body motion in external fields admitting directions of strong
translation invariance. In Sect. 3, after a brief sketch of the two-body problem in general,
we focus on the case of two independent particles submitted only to external fields; their
symmetries and invariances are discussed. Mutual interactions are introduced in Sect. 4, and
concluding remarks are reserved to Sect. 5.

Greek indices take on the values 0,1,2,3.

2 Symmetries in the One-Body Motion

We consider the potential created by the field, i.e. the interaction term, G(q,p) which arises
in the single-particle Hamiltonian equation of motion 2Kψ = m2ψ . The half-squared mass
operator is

K = 1

2
p2 + G (1)

For instance for the charge e in an electromagnetic field, using the Lorentz gauge and the
canonical commutation relations [qα,pβ ] = iδα

β we have

2G = −eA · p − ep · A + e2A · A (2)

Similarly, in a weak gravitational field such that gμν = ημν + hμν(x) we would have 2G =
pμhμνpν .

3A misprint should be corrected between (3.4) and (3.5) of that article: read EL
1 ,EL

2 instead of E1,E2. This
generalization of Ref. [17] is necessary in particular when the external field is purely magnetic (or electric)
constant in all spacetime.
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In general, any quantity which commutes with K is a constant of the motion. Any quan-
tity which commutes with G canonically generates a transformation which leaves the exter-
nal potential invariant. Because of the physical importance of linear and angular momenta
we focus on the canonical transformations that correspond to the continuous isometries of
spacetime (displacements).

The presence of G breaks the full Poincaré invariance. But it may happen that some
element of the Poincaré Lie algebra P still commutes with G. Let j be any element of P ,
we call it a momentum and we may write

j = aαpα + ωμνmμν (3)

where mμν = qμpν −qνpμ, for some constant vector aα and some constant skew-symmetric
tensor ωμν . This terminology encompasses linear and angular momentum.

Since p2 is a Casimir of P it is clear that [K,j ] vanishes (and j is a constant of the
single-particle motion) iff [G,j ] = 0.

In this case j is a conserved momentum in the one-body sector.
j generates a canonical transformation referred to as a surviving isometry. Among all the

surviving isometries there may be some translations: G(q,p) is simply translation invariant
along direction wα when [G,w · p] vanishes. But among the symmetries respected by the
presence of G we shall distinguish strong translation invariance defined as follows:

G is strongly translation invariant along direction wα when both [G,w · q] and
[G,w · p] vanish.

For instance if aμ = (1,0,0,0), we say that G is strongly stationary along direction a when
both [G,q0] and [G,p0] vanish, etc.

This notion is basically defined within the one-body sector, although it will be useful
essentially in two-body problems. Note also that strong translation invariance can be already
considered at the classical level, in terms of Poisson brackets in the eight-dimensional one-
body phase space.

The directions of strong translation invariance span the longitudinal space EL. Assuming
that EL admits orthonormal frames (this case will be referred to as “generic” in contrast to
the exceptional case where EL is a null plane) we introduce the transverse space ET as its
orthocomplement. So the space of four-vectors is an orthogonal direct sum

E = EL ⊕ ET (4)

In terms of the projector onto EL, say τα
β , we distinguish longitudinal and transverse parts

of the canonical variables, say qα
aL,p

β

bL and qα
aT ,p

β

bT respectively. More generally we define
purely longitudinal (resp. transverse ) quantities.

The Lie algebra of the Poincaré group gets split along the same line and we have a longi-
tudinal subalgebra PL generated by τμαpα and τματ νβmαβ . It is obvious that any element of
PL remains a conserved momentum and generates a surviving isometry. But it may happen
that other isometries also survive the application of external field.

Example Consider a charge e submitted to a constant electromagnetic field Fμν such that
only F12 = −F21 = F �= 0. The interaction term in the Hamiltonian equation of motion is

G = − e

2
(q1p2 − q2p1)F − e2

8
((q1)

2 + (q2)
2)F 2 (5)
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This system is strongly translation invariant along any direction of the two-dimensional
plane (03).

We may equally observe that it is invariant not only by rotation in this plane, but also by
rotation in the plane (12) (the latter generated by the transverse angular momentum m12).

Another constant of the motion is the pseudo-momentum C = p + eA, but its conserva-
tion results from invariance under the so-called “twisted translations” that are not spacetime
isometries (in a nonrelativistic context, this concept of twisted translation was introduced by
Avron et al. [19]).

In general, in the presence of strong translation invariance it is convenient to classify all
the conserved isometries. To this end we split any four-vector ξ as ξμ = (ξA, ξ�) where
Latin (resp. Greek) capitals refer to the longitudinal (resp. transverse) directions. In this
notation the longitudinal and transverse parts of the canonical coordinates are

q
μ

L = (qA,0), qν
T = (0, q�), pLν = (pA,0), pT ν = (0,p�)

For an arbitrary momentum j like in (3) the skew-symmetric tensor ωμν can be written as

ωμν =
(

ωAB ωA�

ω�B ω��

)
(6)

where of course ω�B = −ωB� . We get

ωμνqμpν = ωABqApB + ωA�qAp� + ω�Bq�pB + ω��q�p�

and so on. We cast (3) into the form of a unique decomposition

j = j(L) + j(T ) + jmix (7)

where

j(L) = aApA + 2ωABqApB (8)

j(T ) = a�p� + 2ω��q�p� (9)

jmix = 2ωA�qAp� + 2ω�Aq�pA (10)

Any operator which involves only qL and pL (resp. qT and pT ) is called longitudinal (resp.
transverse). Beware that a longitudinal component of a vector is not necessarily a longitudi-
nal operator.

In particular we can consider longitudinal and transverse momenta; for instance ωABmAB

is a longitudinal rotation, etc. The splitting (4) determines, in P two remarkable subalgebras
namely PL and PT formed by the longitudinal and transverse momenta respectively.

As noticed previously,

Any longitudinal momentum is a constant of the motion

although every longitudinal momentum is not necessarily the generator of a longitudinal
translation. Therefore insofar as conservation is concerned the nontrivial piece, in formula
(7) above, is the reduced quantity

jred = j(T ) + jmix (11)
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It is clear that j survives as a constant of the motion iff jred does. Since it belongs to P it
commutes with p2, thus according to (1) it commutes with K iff

[jred,G] = 0

In view of (9, 10) we get on the one hand

[j(T ),G] = a�[p�, G] + 2ω�� [q�p�, G] (12)

Since G is purely transverse, neither qA nor pB can arise in the expression of [j(T ),G].
On the other hand we derive from (10)

[jmix,G] = 2ωA�qA[p�,G] + 2ω�A[q�, G]pA (13)

But [q�, G] and also [p�, G] are purely transverse; it follows that qA and pB arise only
linearly in this expression, so [jmix,G] is simply linear and homogeneous with respect to the
longitudinal canonical variables. Thus in order to have

[j(T ),G] = −[jmix,G]

both sides of this formula must vanish, which amounts to have both j(T ) and jmix separately
conserved.

This situation is expressed by the conditions

a�[p�, G] + 2ω�� [q�p�, G] = 0 (14)

ωA� [p�, G] = 0 (15)

ω�A [q�, G] = 0 (16)

Taking into account the antisymmetry of ω it is clear that the last two formulas imply the
following: keep the label A fixed and consider the vector wμ = (0,w� = ωA�). Then the
quantities w · q and w · p commute with G, in other words w is a direction of strong trans-
lation invariance (unless it vanishes). But w being purely transverse this would clash with
the very definition of ET (which states that all such directions are included in ET ). And this
for all A. Thus all the mixed components ωA� must vanish, and no jmix can be a conserved
momentum. In other words

Theorem 1 No mixed momentum can be a constant of the motion in external field.

Corollary 1 Any conserved momentum takes on the form j = j(L) + j(T ), where j(L) and
j(T ) are separately conserved.

Example For a constant magnetic external field, with only F12 �= 0 we have A,B = 0,3
whereas �,� = 1,2.

qL = (q0,0,0, q3), qT = (0, q1, q2,0)

and so on.
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PL is spanned by p0,p3,m03 whereas PT is spanned by p1,p2,m12. These Lie algebras
respectively obey the formulas

[p0,p3] = 0, [p0,m03] = −ip3, [p3,m03] = −ip0 (17)

[p1,p2] = 0, [p1,m12] = ip2, [p3,m12] = −ip1 (18)

The purely transverse quantity j(T ) = m12 remains conserved.

For this example we can directly check that no mixed momentum can survive: if it were
so, condition (16) would be satisfied for some choice of the coefficients ω��. Since the split-
ting of spacetime directions is 2 ⊕ 2, there are at most four independent such coefficients,
say ω10,ω13,ω20,ω23. From (5) we derive

[q1,G] = − e

2
F12 q2, [q2,G] = e

2
F12 q1

Inserting into (16) yields

ω1Aq2 − ω2Aq1 = 0

But the transverse canonical coordinate q1, q2 are independent, therefore ω1A and ω2A must
vanish for both A = 0 and A = 3. Finally the four components of ω1A and ω2A are zero,
which excludes the possibility that a nonvanishing jmix be conserved.

3 Two-Body Motion

In the two-body sector the canonical variables are qa,pb submitted to the commutation
relations

[qμ
a ,pbν] = i δab δμ

ν

with a, b, c = 1,2. We separate the relative variables according to

zα = qα
1 − qα

2 , yβ = 1

2
(p

β

1 − p
β

2 )

It is convenient to set

Z = z2P 2 − (z · P )2

The Poincaré Lie algebra is realized in terms of the generators4

P = p1 + p2, M = (q1 ∧ p1)μν + (q2 ∧ p2)μν (19)

We can consider individual momenta j1, j2 where ja depends only on qa,pa and set

J = j1 + j2 (20)

4In the formulas concerning the two-body sector, 1,2 are particle labels. In contradistinction, in formulas (5)
and (18) devoted to the single particle, the indices 1,2 obviously refer to spacetime directions.
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so that the generator of any spacetime isometry takes on the form

J = aαPα + ωμνMμν (21)

In the case of two independent (i.e. not mutually interacting) particles, the square-mass
operators are 2K1,2K2 with Ka = K(qa,pa) = 1

2 p2
a + Ga .

When (in addition to external coupling) the particles are mutually interacting, the individ-
ual variables cannot any more appear separately in the equations of motion. The square-mass
operators are generally written as 2H1,2H2 and

Ha = Ka + V (22)

where the interaction term V depends on the canonical coordinates of both particles. V must
be chosen with care, such that [H1,H2] vanishes and such that Poincaré invariance is re-
stored in the limit where the external field is turned off. We define V (0) as the no-external-
field limit of V (more generally the label (0) refers to an isolated system). Naturally
V (0) is supposed to commute with all the generators of spacetime isometries. In other
words, in the absence of external field, H1, H2 respectively reduce to H

(0)

1 , H
(0)

2 where
H(0)

a = 1
2p2

a +V (0). In practice V (0) is explicitly given (as a Poincaré invariant operator) and

is such that H
(0)

1 commutes with H
(0)

2 . For a large class of mutual interactions we can write

V (0) = f (Z,P 2, y · P ) (23)

Realistic forms of f have been derived from quantum field theory [20, see Sect. II], [21].
As soon as one assumes the presence of an external field, one has to modify V (0) in such

a way that now H1 commutes with H2. The problem is of course nonlinear and an explicit
solution is available only for special classes of external potentials. This solution is not com-
pletely unique: further considerations are needed in order to remove (at least partially) the
arbitrariness. For this purpose isometric invariance will be a criterium of choice.

3.1 Two Independent Particles in External Fields

In the limit where no mutual interaction is present, the two-body motion is fully determined
by the external potentials. A spacetime infinitesimal isometry (generated by J ) is a symme-
try of the system as a whole when both G1 and G2 commute with its generator, say

[J,G1] = [J,G2] = 0

This isometry is a surviving isometry.
In this case J is a first integral for the motion of two independent particles respectively

submitted to the potentials G1,G2. In view of (20) it is clear that any momentum J survives
as a constant of the two-body motion iff

[j1,G1] = [j2,G2] = 0 (24)

in other words j1 and j2 respectively survive application of the external potentials G1 and
G2 in the one-body problem.

Surviving isometries may include rotations and translations. A translation along w is a
surviving isometry provided that w · P commutes with both potentials, which makes w at
least a direction of simple translation invariance in the two-body sector, say

[Ga,w · P ] = 0 (25)
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or equivalently

[G1,w · p1] = [G2,w · p2] = 0 (26)

But we shall be more specially interested by strong translation invariance, defined as follows
by analogy with the one-body case; we say that

Definition The couple of potentials G1,G2 is strongly translation invariant along direction
w when each potential separately is strongly translation invariant along w in the one-body
sector, in other words

[G1,w · q1] = [G1,w · p1] = 0, [G2,w · q2] = [G2,w · p2] = 0, (27)

When they exist, the directions of strong translation invariance (for the two-body sector)
span a linear subspace EL included in the space of four-vectors, and the projection of any
vector onto EL is obtained with help of a tensor τ .

For distinguishable particles it may happen that G1 and G2 be strongly invariant along
distinct longitudinal spaces, EL

1 ,EL
2 (this situation would correspond to the existence of two

distinct projectors τ1, τ2). Still the common directions of strong translation invariance span
the linear space EL = EL

1 ∩EL
2 corresponding to a single projector τ . But in general EL

1 ,EL
2

and EL might be all differents, which would allow the possibility of different splittings in
the one-body sector and the two-body one.

For simplicity we shall focus on the simple case where EL
1 = EL

2 = EL. This situation is
ensured by assuming that the external couplings are of the same kind for both particles, in
the following sense:

Definition The external couplings are of the same kind for both particles when there ex-
ists a one-body potential G(α,q,p) where α is a coupling parameter, such that Ga =
G(αa, qa,pa) for a = 1,2, with nonvanishing coupling constants α1, α2.

In other words both are submitted to the same field with possibly distinct coupling con-
stants. The most simple example is given by two different charges if we neglect their mutual
interaction in front of the external field. Our definition discards the special case where one
coupling constant, say α2, vanishes because (if α1 �= 0) it leads to EL

1 �= EL
2 .

To summarize, a surviving isometry may involve rotations and translations, the latter
being strong or not. In the sequel we shall assume that

(a) the external potential admits one or several directions of strong translation invariance
(b) both couplings are of the same kind and EL is generic (not a null plane).

Again the space of four-vectors is split as in (4) and we define the longitudinal piece of
any vector, say ξα

L = τα
β ξβ . Similarly we separate the longitudinal canonical variables qα

aL =
τα
β qβ

a and p
β

bL = τβ
γ p

γ

b from the transverse ones, say

qα
aL = (qA

a ,0), qα
aT = (0, q�

a ), p
β

bL = (pB
b ,0), p

β

bT = (0,p�
b )

Since EL
1 = EL

2 = EL we have

J(L) = j1(L) + j2(L), J(T ) = j1(T ) + j2(T ) (28)
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The external potentials Ga are purely transverse operators since they are supposed to com-
mute with qaL and pbL.

With help of τ and τα
β = δα

β − τα
β we define ωAB , etc., as in (6).

In the two-body sector, the Lie algebra of the Poincaré group, say 2 P has the generators
Pρ and Mμν . In view of (4) it has longitudinal and transverse subalgebras, say 2 PL and 2 PT

respectively. For instance in the constant magnetic case 2 PL is spanned by P0,P3,M03, with
commutators analogous to those in formula (17).

Any element of the Poincaré algebra can be written as in (21), but also

J = a · P + ωABMAB + ω��M�� + ωA�MA� + ω�BM�B (29)

if we split the tensor ω into four pieces corresponding to purely longitudinal (resp. trans-
verse) parts and the mixed parts, say ωAB,ω��,ωA�,ω�B . We get

J = J(L) + J(T ) + Jmix (30)

with

J(L) = aAPA + ωABMAB (31)

J(T ) = a�P� + ω��M�� (32)

Jmix = ωA�MA� + ω�BM�B = 2ωA�MA� (33)

A glance at (10) shows that

Jmix = j1mix + j2mix (34)

Now, in search for the conditions which make a momentum J to be conserved in the
motion of two independent particles, looking at formulas (24), (28), (30), (34) we are left
with two separate problems in the one-body sector. Applying the results of the previous
section we obtain an extension of Theorem 1 and Corollary 1 to the two-body sector,

Proposition 1 For independent particles no Jmix can be conserved, and when J is conserved
we have J(L) and J(T ) separately conserved.

So any isometry of spacetime can be decomposed as in (30). The first piece is J(L) which
depends only on qA and pB thus commutes with G1,G2. In other words

Proposition 2 All purely longitudinal momenta survive as constants of the motion of two
independent particles.

In contradistinction the purely transverse momenta may fail to be conserved. For instance
in the magnetic example above, P1,P2 are not conserved although M12 is.

4 Mutually Interacting Particles

The Ansatz is as follows [17, 18]. The external-field representation is formally obtained
with help of eiB where B = T L is the commutative product of a transverse operator by a
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longitudinal one, namely

T = yT · PT + G1 − G2 (35)

L = PL · zL

P 2
L

(36)

The transformed square-mass operators are

H ′
a = K ′

a + V ′ (37)

with

K ′
1 + K ′

2 = K1 + K2 − 2T
yL · PL

P 2
L

+ T 2

P 2
L

(38)

K ′
1 − K ′

2 = yL · PL (39)

V ′ = f (Ẑ,P 2, yL · PL) (40)

where f is the function in (23) and Ẑ = eibZe−ib where b is the no-field limit of B = LT .
Namely

Ẑ = Z + 2(zT · P )(zL · P ) − (zL · P )2 P 2
T

P 2
L

(41)

Remark The formulas (38)–(41) describe the external-field representation. In the absence of
external field this representation reduces to the usual one only after a unitary transformation.
Indeed, according to (35), we see that T and B are not cancelled by the vanishing of G1,G2.

The following statement is trivial, and can be checked by hand using the canonical com-
mutation relations,

Proposition 3 The quantities yT ·PT , zT ·P = zT ·PT , P 2
T are invariant under the transverse

isometries, in other words they commute with every J(T ).
The quantities zL · P = zL · PL, yL · PL, P 2

L are invariant by the longitudinal isometries,
in other words they commute with every J(L).

In addition the transverse quantities commute with all J(L) and the longitudinal quantities
commute with all J(T ).

Corollary 2 Any J(L) + J(T ) commutes with Ẑ (irrespective of [JT ,Ka] vanishing or not).

Proposition 4 If a momentum J survives as a constant of the motion of independent parti-
cles, it is not affected by the transformation generated by B .

Proof From Proposition 1 we know that such a momentum is J = J(L) + J(T ) where both
J(L) and J(T ) commute with K1,K2. So all we have to prove is that the change of represen-
tation generated by LT produces J ′ = J .

So first consider J(L), it obviously commutes with T . To prove that it commutes with
B we just have to check that it also commutes with L, but in (36) it is manifest that L
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is invariant by the longitudinal displacements, in other words we have [J(L),L] = 0, thus
[J(L),B] vanishes.

Now consider J(T ), being purely transverse it commutes with L. Still we are concerned
about [J(T ), T ] where T is as in (35). In T the first term yT · PT is manifestly invariant by
all translations and invariant by the transverse rotation, thus yT · PT commutes with J(T ).
The second term in T is G1 − G2, but J(T ) is supposed to commute with K1 and K2, hence
also with G1 and G2 and finally with T . To summarize [B,J ] vanishes which implies that
J ′ = J . �

Theorem 2 In the context of the ansatz, with both external couplings of the same kind, if a
momentum J is a constant of the motion of two independent particles, it remains a constant
of the motion in the presence of mutual interaction.

Proof We want to prove that [H ′
a, J

′] is zero. Our assumptions mean that [Ka,J ] = 0 or
equivalently that [K ′

a, J
′] = 0. But Proposition 4 implies that J ′ = J , so we have that

[K ′
a, J ] = 0. In view of (37) all we have to check now is whether in (40) all the ingredi-

ents of V ′ actually commute with J . Proposition 1 tells that J = J(L) + J(T ). Corollary 2
ensures that Ẑ commutes with J . Proposition 3 implies that P 2 and yL · PL have the same
property, which achieves the proof. �

As an example consider two charges in a constant magnetic field: the momenta
P0,P3,M03,M12 remain conserved in the presence of a mutual interaction defined as in (23).

5 Summary and Conclusion

We have proposed a principle of invariance which seems to be a natural requirement in the
presence of external fields. Then we focused on the case of external fields admitting strong
translation invariance. In a first step we checked that, in the absence of mutual interaction,
the description obtained in the one-body sector can be re-phrased with the same structure
in the two-body framework (at this stage all surviving isometries are easily identified and
each one obviously corresponds to a conserved momentum). Then we have introduced the
mutual coupling, assuming that the composition of all the interactions together is performed
according to the Ansatz. And finally we have shown that, in the generic case and provided
both external couplings are of the same kind, this procedure ensures that the spacetime
isometries which leave the external potential invariant remain symmetries of the two-body
system submitted to all the interactions. So the interacting two-body system inherits the
conservation laws implied by the spacetime invariances of the external field. To summarize,
the principle of isometric invariance is satisfied at least in the context of strong translations,
and this result enhances our confidence in the ansatz.

In the present paper we took the view that, among other possible transformations, space-
time isometries play a preferred role, owing to the physical importance of linear and angular
momenta; however, for two opposite charges in the presence of a pure magnetic or pure
electric field, pseudo-momentum is conserved [22]5 and a possible generalisation might be
relevant.

5Formula (3.11) of that article should be written [Cα,Hb] = 0.
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